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ABSTRACT

An algorithm is presented for computing 1n z with complex arithmetic,
by extending to the complex plane Carlson's treatment of a classical iteration
using arithmetic and geometric means. Although not competitive with currernt
techniques which handle the real and imaginary parts separately, the algorithm
may be useful in special purpose applications. A detailed analysis of
convergence, scaling, and roundoff is given. Standard identities and som«
minor bookkeeping allow the evaluation of inverse circular and inverse
hyperbolic functions. It is also shown that the basic procedure is related

to certain real algorithms.
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SIGNIFICANCE AND EXPLANATION

Complex lecgarithms are usually computed with real arithmetic,

In(x + iy) = % ln(x2 + y2) + i tan-l(y/x) ,

using the real 1n and real tan-l functions available in high level programming
languages. This report studies a novel approach, based on complex arithmetic,
obtained by extending to the complex plane a known real algorithm. The strategy
consists of a basic iteration, which uses one complex square root per cycle,
accelerated by Richardson extrapolation, a speeding-up process well-known to
numerical analysts. With proper scaling of the arqument, the accelerated
procedure requires four complex square roots for accuracy to 10 decimals

(compared to eighteen complex square roots in the non-accelerated case).

In(z + sz -1,

i cosh_lz .

Standard identities such as

It

cosh_lz

[QoX] 2

otc.

and some minor bookkeeping to account for principal! branches, allow the evalua-
tion of complex inverse trigonometric functions. The report analyzes the
algorithm with respect to scaling, convergence, and stability, and it relates

the algorithm to other procedures, including classical methods for calculating
the constant 7. &ince complex square roots arce done at the software level, and
thus costly in machine time, the algorithm is not competitive with standard
methods handling the real and lmadinary parts separately with real arithmetic.
However, its sinpliciry and stabllity could make it attractive for imp.lementation
in microende or read only memory in special purpose applications requiring

extonsive usa o of olementary comilex functilons. P ~

B '
.1
- B s I P T e

The reectomsiba ity for o vn wertint and views oxirokeed 3 this descoriptive

Sumrmar liees wsths MEO L, i oo wth o rhe gty b v v 1t

S |




S . “ T s =

EVALUATION OF COMPLEX LOGARITHMS AND RELATED FUNCTIONS

.1'.
George J. Miel

1. Introduction. Logarithms of complex numbers are commonly computed

using real arithmetic separately for the real and imaginary parts,
1 2 -
In(x + iy) = > ln(x2 + vy ) + i tan 1(y/x) . (1.1

with suitable precautions to avoid numerical problems; see, e.g., [£, Algorithm
243]. We analyze an algorithm based on complex arithmetic, obtained by
extending to the complex case Carlson's procedure [3]. The strategy consists

of a basic iteration, which uses one complex square root per cycle, accelerated
by Richardson extrapolation. The basic iteration generates one of the sequences
of Borchardt's algorithm [2, p. 499], [4, p. 170]. For real arguments, this
iteration is also related to Thacher's algorithm for inverse cosines [11], to
Viete's infinite product for 7 [8, p. 26], and to the method of equal perim-
eters [8, p. 32]. As for the real case, the improvement due to extrapolation

is substantial, the algorithm is reliable and stable, and storage needs are
modest as there are no constants to be saved. Numerical experiments indicate

no serious cancellation leading to loss of significant figures, as sometimes
happens when a real algorithm is extended to the complex case. With an adeguate
reduction in the range of the independent variable, the accelerated procedure
requires four complex square roots for 10D accuracy. Standard identities, and

some bookkeeping to account for principal branches, allow the evaluation =7

inverse circular and inverse hyperbolic functicons. The complex arithmervic i-
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provides a unified design for a simple and modular software package. Unfortu-
nately, the complex square roots preclude the algorithm from competition with

the straightforward approach (l.1), which takes advantage of efficient real

elementary functions provided in high level languages. However, the algorithm

might be of interest in special purpose applications implemented in microcode

or read only memory. Certain monotonicity properties of Borchardt's iteration

O Aty @ N e o gy e

can be exploited for computation in complex interval arithmetic [10].
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2. The Basic Algorithm. The goal is to evaluate the single-valued function
1n z whose range is {x + iy ]— mT<y< T}. The rational operations of complex
arithmetic and the principal complex square root are assumed available [&, rkey B

The latter is the single-valued function whose range is

¢t = x +iy | x > 0 or x=0 with y 2 0} .

Recall that

+
/;5 =2z, if ze € . (2.1)

We will use the function F(z) = (z coth 2z)/w and its expansion

+2 .
F(z) =a +az° +az" +...+az"" +002""7, (2.2)
) 1 2 ™

where aj depends on the Bernoulli number sz,
23
2°°B_,
a_ - —u——Z—J——— ’
b2t w

and where Landau's notation f(z) = 0(g(z)) is adequately defined [7, p. 15¢C/,

In what follows, D = {z l lz| > 1}.

Theorem. Let z € D and

Z+1 - - /‘7——’
= —= =¢ +/8%- 1, n20 2.3
5o Zz-1 ' “n+l = °n E’n lon ( )
The numbers En satisfy
-n=-1 . )
- — ; = 4 + £ )
_ coth 2 W, N+l 2’n n' (2.4)
where w = 1n 2z, € = =1/7, , el <= | £ |, and the numbers u_ = 2-n—l{
o " “n ‘n+l n 'n n > 1N
converge to u = 1/w with a rate
-1 -n-1 .
u-u = 4 (u-u) + 0(16 ). (£.5)
n+l n

RN




Proof. For n = O, Eo = (ew + 1)/(ew- 1) = coth w/2. The relation

m =a+ ib, csch § = |sinh Cl—z(sinh a cos b - i cosh a sin b) implies that

=2l w/2 ¢ € whenever w € 1n(D). Use the identities coth [/2 = coth 7 +

]

l

i e 2 2

; csch 4, csch'™ = coth' g - 1 and (2.1) to get
i

; coth w/4 = coth w/2 + /coth? w/2 - 1, w € 1n(D). 1

. 2. . - _ )
The relation (2.3) gives £n+1 2£n 1/2;n+l The convergence follows from

; u = F(2-n-1w) and lim F(Z) = 1/w. Finally, use (2.2) with m =1 to get (2.5). T
| i =
: The second expression in (2.4) shows that as n increases, £n+1 gets J

increasingly close to 2€n. This fact provides a simple variable precision
scheme. A range reduction allows the evaluation of logarithms for machine

, representable arguments.

Basic Algorithm. Adequate precision is assumed available. Given z' # O,

proceed as follows to find 1ln z' correct to @ decimals:

r

. -r
4 1. Factorize !z'l =2"x, x € [2,4). Let z =2 "z'.

2. Compute (2.3) with n =20, 1, ..., N where N is such that &N and

2£N-l agree to d + 1 decimals.
3. Let ln z' = (2'N'1gN)'1 +r ln 2. ’

Various range reductions are possible. Instead of the modulus, one can
use la + ib| = |a| + |b| or |a + ib| = max (|a|, |b!). The code should take
advantage of the multiplications by powers of 2.

Roundoff Propagation. Numerical experiments indicate that the algorithm

is remarkably stable, A simplified analysis shows why. Consider

A ” ~

T = F - R ; =
Kel ? € ‘n+l ¢

~ -n-1g
)y = &, u =2 £,
n n n n




where ¢(z) = z + /z2 - 1 and Gn reflects the accuracy of the complex square

ine. cti = -£
root routine. Letting En En En,

n+1/(5n+l - En)'

€41 = <b‘(£n)€n + Gn, ¢'(€n) = £

n

, ~ . . ~ . ~
Since En+ 2£n, assume for simplicity that Gn 26n-l' ¢ (En) 2.

1

Then EN x N2N_16o + 2N€o, and assuming no error in the multiplication by

Z-N_l, we get

o (2.6)

The accumulated roundoff is acceptable if the square root routine is accurate

to at least d + 2 decimals. Practice shows that cancellation causes actual

roundoff to be smaller than (2.6).

e
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3. Richardson Extrapolation. Section 5 shows that {un} is one of the
sequences generated by Borchardt's algorithm [ 2], [ 3], [ 4, p. 170]. As for

the real case, (2.5) indicates that successive errors in u, are ultimately

reduced by a factor 1/4. 1In order to speed-up convergence, we extend to the

complex case the treatment of Carlson [ 3].

The procedure 1is given by

P =p Pk-1,n41 ~ Pr-l,n T E K SN
kn k-1,n+l 4k -1 ' 0< n< N-k -
The scheme generates a triangular array,
ilf/ P11 /Pl N-1
Tzo ///// 2 N-2
PNO
in which the arrows illustrate the dependence of Pkn on Pk—l,n and pk-l,n+l'
> n+l
Recall that for z € D, u = F(Cn)->u = 1l/w, i, T w/2 .
Let aRey 4 (5) - Fp_q(22
F(2) = F@), P () = S k=1 (8) 7 Fyoq (20D
0 k PR
4 -1
Then (2.2) implies that
2 2k +
F (1) = + b k+2 o( k 4)’

(3.1)

(3.2)

(3.3)

- .




where bk

Pkn

Thus, the errors in

roughly reduced by a factor 4

is a constant.

-y = 4-(k+1)(k+n+1)bkw2k+2

Since Cn 2 Cn+l' we have Pkn = Fk(cn+k)'

+ 0(4—(k+2)(k+n+l))_

successive elements of the k-th row of (3.3) are each time

- (k+1)

Error Bounds via Interpolation Theory. Let f(z) = F¢/z) = (/z coth Vz) /v
2 2, n+l . . . .
and zn = Cn =w /4 ;7 (3.2) is the Neville scheme for evaluating polynomials
with
Pkn = value at z=0 of the polynomial of degree £ k

see Brezinski [1, p.

Theorem. If u
{ then
|
u
Proof. Let a =
a(xlzi).

For the side z

!coth z

<

For z = X + lia, =-a

which interpolates f(z) at z Z 41’

2
26]. The function f(2) is analytic for |z| < m°.
=1/w, w=1n 2, and
1< |a] Jm? -1 /3
2
- + 2k+
_p | < o7 (KD (k#2ntl)) 2k 1(M+ﬂ) .
kn 2
%;- and let C" denote the square with vertices

We first show that

max
zeC"

|coth zl < coth a.

a + iy, —a £ y £ a, we get

| < [ea+%Yl * Lg‘a'%Yl e+ e—a = coth a.
Hea+1y| _ ’e-a—lyll ea _ e-—a
X £ a, use eia = %(—l +i/3) to obtain

Consequently,

(3.4)

(3.5)

(3.6)




= T pT—

-§2 4+ a%.2ias

‘”w-\- o

s

s2.a? + 2ias

o ) ————

F16G.  Estimate maxl/z coth /FI for t r C' rather than t ¢ C usina that

Y/t is then on the square  C".




1 - i/3 tanh x
tanh x - i/3

- (3 tanh x + 1 1/2

fcotn z| = z Yix).

l tanh? x + 3

Similarly for the other two sides. The function Y (x) reaches its maximum at
x=*a. Since Y(*a) € coth a, we get (3.6).
Now, let C denote the union of two semicircles of radius 1/2 and centers

2
at 0 and z, = respectively, and two parallel segments as shown in the

0 4
figure. Consider also the union of two partial parabolas,
2 .
¢’ = {t(s>a’ + 2ias)| -a £ s € a}.
The curve C’ is inside the circle of analyticity and (3.4) implies that C

is not outside C’.

By a classic result,

(-l)k+l . ann+l..'zn+k T ~
u ~ P = * ’ (3.7}
kn .
2mi w
where
I glt) dt , g(t) =Vt coth /t.
Ct(t-zn)...(t—zn+k)
But

(V]
o

1] < 2k+2(2lz0| + ) M, (
where M 2 Fax [g(t)]| . wWe have

a~

@2& lg(t)[ < @25,]g(t)] = ggé"[g(zz)] </2 a coth a = 0,972 7,

where we used (3.6). To complete the proof, take M =1 and use (3.7) and .l..
For the range reduction described earlier, (3.4) is satisfied and

lw| < [ln 4 + i7m|. For accuracy to d decimals, set the bound in (3.5) no

a and thus obtain:

greater than %10-




Non-accelerated case (k=0,n=N) N2 1.66 d + 2.48,

Accelerated case (k=n = N) N2 /1.11d + 1.66 - 0.07.
Actual computation shows that 10D accuracy requires N = 18 in the non-accel-
erated case and N = 4 in the extrapolated case. Theacceleration defined
by (3.1) and (3.2) is easily coded. The code should take advantage of the
multiplications by powers of 4. Variable precision is possible by
a priori specification of N or by on-line comparison of P and

NO

PN—l,l'

Roundoff Propagation. If the values in the first row of (3.3) are

contaminated with errors whose magnitudes are less than e, then the errors
later in the extrapolation have magnitude which nowhere exceed 2¢. Combining
this with (2.6), we get
~ N
- < |= + +
]PNO PNOI ~ ]2 60 sol [C(’
where %NO is the computed value of PNo and £ is the accumulated roundoff

in the computationof (3.2). The major term is % 60 and the extrapolation

is well-conditioned provided that the square root routine is of good quality.

-10)~
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4. Inverse Trigonometric Functions. The table below specifies for each

function a bijection between the domain and given range.

FUNCTION RANGE
1n R, = {a+ib| -m s b < 7}
cosh™t R, = {atib| -T< b< 0 or b = -7, 0 with a 2 0}
sinh™t R, = {a+ib| -m/2< b< /2 oxr b = * T/2 with a 2 0}
tanh” T R, = —é— R, - {~im/2}
cos-l iR2
sin-1 iR3
tan™t -iR

4

The following procedures use standard identities to evaluate the functions.

Algorithm for w = cosh_lz. Algorithm for w = sinh-lz.
w'=ln(z+¢zz-l)=a+ib. w'=ln(z+/z2+1)=a+ib.
If b>0 then w=-w'. If be[ -m,-T/2) then w=-iT-w'.

If b=-m, 0 and a<0 then w=-a+ib. If be(w/2,m) then w=in-w'.
Otherwise, w=w'. If b=%f7/2 and a<0 then w=-a+ib.

Otherwise, w=w'.

Algorithm for w = cos-lz. Algorithm for w = sin-lz.
w=1i cosh z. w=1isinh T(-iz).

Algorithm for w = tanh-lz. Algorithm for w = tan-lz.
2#*1, w=%—ln(%§§). z#+i, w=-d.tanh_liz.

- . o.o-1 ..
In the case of cosh 1 and sinh ~, some logic is needed in order to choose
] the value in the specified range, since these functions are double-valued

in the range of 1ln, 9, p. 417].
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5, Connection with Real Algorithms, For real arguments, our accelerated
N
procedure is exactly eguivalent to Carlson's treatment of Borchardt's algorithm

.¥]. The non-accelerated procedure is related to Thacher's algorithm {11] for real

inverse cosines and to classical methods for calculating 7.

; Borchardt's Algorithm. If u v > 0 then the sequences

-1’ -1

u = l(u +v ), v =V nz2-1, (5.1)
2’ n n

u v
n+l n+l n+l n’

converge monotonically to a common limit B(u_ ,v_l), [2]. wWe show that

1l
-n-1 ST E L2
= = ’ - + . .
n 2 En, £n+l €n+ En u,t v, (5.2)
- 2
Get the invariant 4n+1(u2 - v2 ) = ¢ and then substitute v_ = (u2 -4 nc)l/
n+l n+l n n

in the first relation of (5.1). Our basic algorithm generates (5.2) corres-

2
. z +1 2z _ 1
ponding to B > '3 = 1nz
z -1 z -1

= /R ¥2 then t_ = 2"VIR -2

Thacher's Algorithm., If Rl =y 2z+2, Rn+1

converge to cos ™}z if |z] < 1 and to cosh_lz if |z| 21, [11]. It turns

out that tn is the reciprocal of Vo generated by (5.1) with proper u_y and v_

1

Method of Equal Perimeters. If u > 2 then

1 T 1 Tl _ 1
B{E~cot E' E csc E] =

u_ = 1 cot T = radius of inscribed circle in a regular
n 2n+i 2n+1 "
2" U - gon of perimeter 2.

Descartes worked with u = 4, [8, p.32].

-12-
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viete's Infinite Product. If g_, = /2, 9 ='V—;— + -;

—
Q
It
|+
+
*~|w‘

then lim(g_lgo...gn) = 4/7, {8, p.26]. We have 9_199+ -9, = Vo wher-: v_

corresponds to B(l, /2) = l/sin-l'\/% .

e




(1]

(2]

(3]

(4]

(5]

[6]

(7]

(8]

[9]

(10]

[11]

REFERINCES

C. BREZINSKI, Acceleration de la Convergence en Analyse Numérlqne,
Lecture Notes in Mathematics, Vnl. 7%4, Springer-Vertay, New York,
1977.

B.C. CARLSON, Algorithms involving arithmetic and geometric means,
Amer. Math. Monthly, 72(1271), pp. 33¢=505,

B.C. CARLSON, An algorithm for computing logarithms and arctangents,
Math. Comp., 26(1272), 1. S3431=-549,

B.C. CARLSON, Specilal Functions of Appired Marhematics, Academic Press,
New York, 1977.

B.C. CARLSON, Computina elliptic integrale by duplicatiorn, Numer.
Math., 33(1979), pp. l-lt.

Collected Algorithms from ACM, ACM Aluorithms Distributinn Service,
% IMSL, In.., 7500 Bellaire Blvd., Houston, TY 77036,

J. DIEUDONNé, Infinitesimal Calculus, bHoughton Mifflin, Boston, 1271,

E.W. HOBSON, Squaring the Circle, a lYistory »of the Proklem, “hels: a,
New York, 19353.

K. KNOPF, Thecry and Application of Infinit.. Series, second Frnglish
edition, Blackie & Son, London and Glasgow, 1751,

G.J. MIEL, Evaluation of c¢omplex logarithms and related functions with
interval arithmetic, Proceedings of the International! symposium
on Interval Mathematics, held May 27-31, 1230, in Frcaibura,
W. Germany, Academic Press, New York, (to appear).,

H.C. THACHER, JR., Iterated square root expansinns for the invers.
cosine and inverse hyperbolic cosine, Math. Cemp., 15(192¢1),
PE. 399-403.

-14-




L2

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

RFAD INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORF COMPLETING FORM
‘. REPORY NU!.QR 2 GOVY ACCESSION NO.| 3. RE ] T'Ss CATALQG.
- - - — 7 !
S S N BLLL : AD 409356~ (7 Ve bpCa/ :
8. TITLE (and Subttde) ;Wt OF REPOBMS wWo
. N ‘ ummary/Repcrt. o specific
'/ _§* EVALUATION OF O Mi'LEX LOCARITHMS AND Rt
\(_{’ E s M /L ARITHMS AND —4—TEDORINg period
' ,RELATED EUNCTIJNF B 6 PERFORMING ORG. REPORT NUMBER
AUTHOR(e) 8. CONTRACY OR GRANTY NUMBER(a)
- }

I} George 3.l L DAAG29-84-C 0041

)

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK

Mathematics Research Center,” University of AREA & WORK UNIT NUMBERS
A . Work Unit Number 7 (liumerical
610 Walnut Street Wisconsin Analysis & Compurcr sSclence)
Madison, Wisconsin 53706 ’
11 CONTROLLING OFFICE NAME AND ADDRESS 13~REPORT DATE .
U. S. Army Research Office /” T .ﬂ__w}’/
| U
: P.O. Box 12211 NI_WWMBER OF PAGES
| Research Triangle Park, North Carolina 27709 14
i & MONITORING YGENCY NAME & ADDRESS()! different trom Controlitng Othice) 9. SECURITY CLASS. (of thie report)
,

,,«'4 - I UNCLASSIFIED
w - '8’ DECL ASSIFICATION DOWNGRADING
SCHEDULE

16, OISYR BUTION SYATEMENT (of thia Report)

Approved for public release; distribution unlimited.

t7 DISTRIBUTION STATEMENT (of the sbatract entered in Block 20, if different irom Report)

¥
18 SUPP_LEMENTARY NOTES
i
|
19 XKEY wORDS (Continue on reverge atde il necessary and identtiv by block number) :
h Tomi.lex logarithms
Inverse curoular functions
) Inverse hyperbolic functions

Comtlex arlthmety
Acceleration of converagern e

20 ABSTNIACT (Continue an reverae aide Il necessary and identitv by bloch number)

A aldorithm s rresented for computing In oz with com lex arithm 1., b
extonding to the comt lex tlane Carlson's treatmont of oo lassiooal 1terat ton asin
arithmet i and geometric means.  Although not competitive with curren® oo hni e
whilon handle toe real and imaginary jarts separately, the alaorithm mas e asef ol
1o specal puarpose arc I cations, A detarled analysis ot converagonce, -0 alled, «u;fiﬁ
rovun dof 1S rse . tandard rdentaitios and come minor bookke o ine oal low t e
cvaladat ton of greserse dr calar oand o inverse hyperbolic functions, It 1o (e

shown theat the pas1e procedure 1s related to cortain real alaorithme.

DD , S°™, 1473 eoimonoF 1 noves s ossoLerel, N (1

JAN 73 ‘ g - Y UNCLASSIFIED
” ‘J _‘l‘ \J {\/\{ _ J4 SECURITY CLASSIFICATION OF Th 5 PAGE (Whan Data Entered)
4 - -

B e+ P TP IT L s )

B e e e :




